65 research outputs found

    A Low Complexity Algorithm and Architecture for Systematic Encoding of Hermitian Codes

    Full text link
    We present an algorithm for systematic encoding of Hermitian codes. For a Hermitian code defined over GF(q^2), the proposed algorithm achieves a run time complexity of O(q^2) and is suitable for VLSI implementation. The encoder architecture uses as main blocks q varying-rate Reed-Solomon encoders and achieves a space complexity of O(q^2) in terms of finite field multipliers and memory elements.Comment: 5 Pages, Accepted in IEEE International Symposium on Information Theory ISIT 200

    Subfield-Subcodes of Generalized Toric codes

    Full text link
    We study subfield-subcodes of Generalized Toric (GT) codes over Fps\mathbb{F}_{p^s}. These are the multidimensional analogues of BCH codes, which may be seen as subfield-subcodes of generalized Reed-Solomon codes. We identify polynomial generators for subfield-subcodes of GT codes which allows us to determine the dimensions and obtain bounds for the minimum distance. We give several examples of binary and ternary subfield-subcodes of GT codes that are the best known codes of a given dimension and length.Comment: Submitted to 2010 IEEE International Symposium on Information Theory (ISIT 2010

    MODELOWANIE I ANALIZA SKURCZOWEGO I ROZKURCZOWEGO CIŚNIENIA KRWI Z WYKORZYSTANIEM SYGNAŁÓW EKG I PPG

    Get PDF
    Taking into account the peculiarities of using the MAX86150 evaluation system for measuring ECG and PPG signals, mathematical models were developed for indirect determination of systolic and diastolic pressure using fingers on the hand, which were tested in the MATLAB environment. Received ECG and PPG signals. Based on the proposed mathematical models, ECG and PPG signals were processed in the MATLAB package and the results of indirect measurement of blood pressure were presented.Biorąc pod uwagę specyfikę wykorzystania systemu oceny MAX86150 do pomiaru sygnałów EKG i PPG, opracowano modele matematyczne do pośredniego określania ciśnienia skurczowego i rozkurczowego używając palców dłoni, które zostały przetestowane w środowisku MATLAB. Otrzymano sygnały EKG i PPG. W oparciu o zaproponowane modele matematyczne, sygnały EKG i PPG zostały przetworzone w pakiecie MATLAB oraz przedstawiono wyniki pośredniego pomiaru ciśnienia krwi

    THAWS: automated wireless sensor network development and deployment

    Get PDF
    This research focuses on the design and implementation of a tool to speed-up the development and deployment of heterogeneous wireless sensor networks. The THAWS (Tyndall Heterogeneous Automated Wireless Sensors) tool can be used to quickly create and configure application-specific sensor networks. THAWS presents the user with a choice of options, in order to characterise the desired functionality of the network. With this information, THAWS generates the necessary code from pre-written templates and well-tested, optimized software modules. This is then automatically compiled to form binary files for each node in the network. Wireless programming of the network completes the task of targeting the wireless network towards a specific sensing application. THAWS is an adaptable tool that works with both homogeneous and heterogeneous networks built from wireless sensor nodes that have been developed in the Tyndall National Institute

    Energy-aware dynamic route management for THAWS

    Get PDF
    In this research we focus on the Tyndall 25mm and 10mm nodes energy-aware topology management to extend sensor network lifespan and optimise node power consumption. The two tiered Tyndall Heterogeneous Automated Wireless Sensors (THAWS) tool is used to quickly create and configure application-specific sensor networks. To this end, we propose to implement a distributed route discovery algorithm and a practical energy-aware reaction model on the 25mm nodes. Triggered by the energy-warning events, the miniaturised Tyndall 10mm data collector nodes adaptively and periodically change their association to 25mm base station nodes, while 25mm nodes also change the inter-connections between themselves, which results in reconfiguration of the 25mm nodes tier topology. The distributed routing protocol uses combined weight functions to balance the sensor network traffic. A system level simulation is used to quantify the benefit of the route management framework when compared to other state of the art approaches in terms of the system power-saving

    Wireless sensor node design for heterogeneous networks

    Get PDF
    Two complementary wireless sensor nodes for building two-tiered heterogeneous networks are presented. A larger node with a 25 mm by 25 mm size acts as the backbone of the network, and can handle complex data processing. A smaller, cheaper node with a 10 mm by 10 mm size can perform simpler sensor-interfacing tasks. The 25mm node is based on previous work that has been done in the Tyndall National Institute that created a modular wireless sensor node. In this work, a new 25mm module is developed operating in the 433/868 MHz frequency bands, with a range of 3.8 km. The 10mm node is highly miniaturised, while retaining a high level of modularity. It has been designed to support very energy efficient operation for applications with low duty cycles, with a sleep current of 3.3 μA. Both nodes use commercially available components and have low manufacturing costs to allow the construction of large networks. In addition, interface boards for communicating with nodes have been developed for both the 25mm and 10mm nodes. These interface boards provide a USB connection, and support recharging of a Li-ion battery from the USB power supply. This paper discusses the design goals, the design methods, and the resulting implementation

    GENESI: Wireless sensor networks for structural monitoring

    Get PDF
    The GENESI project has the ambitious goal of bringing WSN technology to the level where it can provide the core of the next generation of systems for structural health monitoring that are long lasting, pervasive and totally distributed and autonomous. This goal requires embracing engineering and scientific challenges never successfully tackled before. Sensor nodes will be redesigned to overcome their current limitations, especially concerning energy storage and provisioning (we need devices with virtually infinite lifetime) and resilience to faults and interferences (for reliability and robustness). New software and protocols will be defined to fully take advantage of the new hardware, providing new paradigms for cross-layer interaction at all layers of the protocol stack and satisfying the requirements of a new concept of Quality of Service (QoS) that is application-driven, truly reflecting the end user perspective and expectations. The GENESI project will develop long lasting sensor nodes by combining cutting edge technologies for energy generation from the environment (energy harvesting) and green energy supply (small form factor fuel cells); GENESI will define models for energy harvesting, energy conservation in super-capacitors and supplemental energy availability through fuel cells, in addition to the design of new algorithms and protocols for dynamic allocation of sensing and communication tasks to the sensors. The project team will design communication protocols for large scale heterogeneous wireless sensor/actuator networks with energy-harvesting capabilities and define distributed mechanisms for context assessment and situation awareness. This paper presents an analysis of the GENESI system requirements in order to achieve the ambitious goals of the project. Extending from the requirements presented, the emergent system specification is discussed with respect to the selection and integration of relevant system components.The resulting integrated system will be evaluated and characterised to ensure that it is capable of satisfying the functional requirements of the projec

    THAWS: automated design and deployment of heterogeneous wireless sensor networks

    Get PDF
    This research focuses on the design and implementation of a tool to speed-up the development and deployment of heterogeneous wireless sensor networks. The THAWS (Tyndall Heterogeneous Automated Wireless Sensors) tool can be used to quickly create and configure application-specific sensor networks, based on a list of application requirements and constraints. THAWS presents the user with a choice of options, in order to gain this information on the functionality of the network. With this information, THAWS uses code generation techniques to create the necessary code from pre-written templates and well-tested, optimized software modules from a library, which includes an implementation of novel plug-and-play sensor interface. These library modules can also be modified at the code generation stage. The application code and necessary library modules are then automatically compiled to form binary instruction files for each node in the network. The binary instruction files then wirelessly propagate through the network, and reprogram the nodes. This completes the task of targeting the wireless network towards a specific sensing application. THAWS is an adaptable tool that works with both homogeneous and heterogeneous networks built from wireless sensor nodes that have been developed in the Tyndall National Institute. Its advantage over traditional methods of WSN development is simplification of development

    A systematic review of blockchain hardware acceleration architectures

    Get PDF
    The aim of this paper is to provide a systematic literature review of blockchain hardware acceleration. Blockchain technology has achieved significant attention in recent years particularly in the area of cryptocurrency however it is gaining popularity in other applications such as supply chain management and e-government. Based on a structured, systematic review of the relevant literature, we present a classification of the primary areas in blockchain technology that make use of heterogeneous hardware for accelerating certain blockchain functions. Based on these findings, we identify various research gaps and future exploratory directions that are anticipated to be of significant value both for academics and industry practitioners
    corecore